FieldTrip Tutorial
(DRAFT)

April 25, 2015



Giorgio Arcara !

IDepartment of Neuroscience, Padua, Italy

This work is licensed under the Creative Commons Attribution-NonCommercial
4.0 International License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to Creative
Commons, PO Box 1866, Mountain View, CA 94042, USA.

@ @ &



Contents

(1__Introductionl 3
2 Key ideas for using Fieldtrip| 3
(2.1 FieldTrip works only trough the command line/ . . . . . . . .. 3
2.2 'The cfg structure| . . . . . . .. ... 3
[2.3  The same function does several things|. . . . . . .. ... ... 4
[2.4  Fieldtrip can work on objects or on files| . . . . .. ... ... 5
(2.5  Fieldtrip doesn’t make trial bookkeeping| . . . . . . .. . ... 6
[2.6 If you have several conditions, you have to load them separately| 7

[3 A pipeline for FieldTrip analysis
| (single subject level)| 7
[3.1 Loading data with Fieldlrip| . . . . . .. ... ... ... ... 8
[3.2 Giving a first look at thedatal . . . . . . . ... ... ... .. 9
(3.3 Filtering thedatal . . . . . ... ... .. ... ... . ..... 15
[3.4 Epoching the data and retrieving trial information|. . . . . . . 17
[3.5  Removing bad channels and bad trials] . . . .. .. ... ... 19
[3.5.1  Manual rejection of channels and trials| . . . . . . . .. 19
[3.5.2  Authomatic rejection of channels and trialg|. . . . . . . 21
[3.5.3 Interpolation of missing channels] . . . . ... ... .. 22
[3.6 Correcting head movements| . . . . . ... ... ... ..... 22




1 Introduction

This is a short tutorial on the use of FieldTrip to analyze MEG data col-
lected with CTF system. All explanations provided assume some knowledge
on MATLAB and on MEG/EEG pre-processing and data analysis. The
materials contained in this document come from the freely available online
FieldTrip tutorials, or from personal experience and considerations. The tu-
torial is focused on Fieldtrip, but some functions from other toolboxes (as
EEGLAB) are also used. The tutorial is distributed without warranty of any
kind.

2 Key ideas for using Fieldtrip

There are some key ideas related to the use of Fieltrip. Knowing them in
advance will make the life a lot easier.

e |FieldTrip works only trough the command lin€]

[The cfg structure|

[The same function does several things|

[Fieldtrip doesn’t make trial bookkeeping]

IIf you have several conditions, you have to load them separately]|

2.1 FieldTrip works only trough the command line

There is no graphical interface in Filedtrip. No buttons, almost no windows.
All operations (e.g., filtering, epoching, calling graphics), are performed via
command lines. In other words, working with fieldtrip means writing lines of
code, and knowing some basic concepts of MATLAB (and of programming in
general). If you don’t know what is an object, or a directory, it is better you
drop this tutorial and look for a basic tutorial on MATLAB or programming.

2.2 The cfg structure

Almost all functions in FieldTrip require to specify a cfg structure. For ex-
ample:



data=ft_preprocessing(cfg);

Technically speaking, the cfg is a MATLAB struct with several fields that
can (or must) be specified. Each field specify some arguments of the function
that is called. For example:

cfg=I[1;

cfg.headerformat="ctf_ds’
cfg.dataset="prova_VisualOddBall_20141110_01.ds’
cfg.viewmode = ’butterfly’;

cfg.continuous=’yes’

cfg.ylim = [-2.20e-11 2.20e-11]

cfg=ft_databrowser(cfg)

In this example a cfg structure is first created. Then several fields are
added by specifying some arguments of the call that is made afterward (with
ft_databrowser). There are some important things related to the cfg struc-
ture to be noted here:

1. Typically in a fieldtrip analysis pipeline cfg structures are created (and
overwritten) several times. Basically, a temporary cfg is created every
time there is a call to a function.

2. Typically in the cfg structure only a limited number of arguments of the
function call are specified. All other arguments are left to the default
values.

3. The output of a call of a function can yield as output a data structure
(see later) or a cfg structure.

2.3 The same function does several things

There is relatively a small number of functions in FieldTrip, but some of
them perform different things. By changing some fields of the cfg structure



the same function can be used for several different purposes.This is because
several FieldTrip functions are basically wrappers for other functions (that
very often can be called individually). For example, in the box below it is
shown how the function ft_preprocessing can be used for different pur-
poses:

% filter data
cfg=[1;
cfg.channel="MEG’;
cfg.lpfilter=’yes’;
cfg.lpfreq=30;
cfg.hpfilter=’yes’;
cfg.hpfreq=1;

data_filt=ft_preprocessing(cfg, data)
% baseline correction

cfg=[1;

cfg.demean = ’yes’;

cfg.baselinewindow = [-0.2 0];

data_bc=ft_preprocessing(cfg, data_filt)

What happens in this case is that the call to ft_preprocessing imply a
call to several other more basic functions, as ft_read_data and
ft_channelselection. Importantly, with such system it is possible to per-
form several actions with a simple call to a function. In this case however,
it is important to understand what is the order of the actions performed
(for example, first resampling and then filtering?). If the order with which
the actions be will performed is not clear, it is recommended to breaks the
actions in different call to a function.

2.4 Fieldtrip can work on objects or on files

Fieldtrip allows to work on objects but also directly on files (without creating
an object first). To my knowledge loading an object should allow faster
computations in some cases, but it could overload the RAM when too many



objects are loaded in the workspace (thus slowing down MATLAB). If a
function work directly on a files, the filename is specified in the cfg structure.
If the funciton work on an objects, the function should be called by specifying
two arguments, the cfg structure and the object.

% filter data directly from a file

cfg=[1;
cfg.dataset="GR_VisualOddBall_20141114_01.ds’
cfg.channel="MEG’;

cfg.lpfilter=’yes’;

cfg.lpfreq=30;

cfg.hpfilter=’yes’;

cfg.hpfreq=1;

data_filt=ft_preprocessing(cfg);

% filter data from an object
cfg=[1;

cfg.channel="MEG’;
cfg.lpfilter=’yes’;
cfg.lpfreq=30;
cfg.hpfilter="yes’;
cfg.hpfreqg=1;

data_filt=ft_preprocessing(cfg, data);

2.5 Fieldtrip doesn’t make trial bookkeeping

It is up to the user to keep track on the trials, and which condition they

belong. This is particularly relevant given the following point, explained in
section



2.6 If you have several conditions, you have to load
them separately

Unlike other software it appears that if you have more than one condition
(for example marked with different events name), you have to load them
separately if you want to extract epochs. Afterwards, you can append the
separate datasets to create a single dataset of epoched data. This can be
useful if you want to perform an ICA on all the epoched data. Note that in
this case you lose the information of the trial original ordinal position, cause
the trials will be stacked in the order of data appending. If you append
two datasets, respectively with Target and NonTarget trials, the resulting
dataset will contain first all Target trials and then all NonTarget trials. The
original position of target can be retrieved from the sampleinfo field of the
resulting dataset. The field sampleinfo records the starting and ending
samples (timepoints) of the epoch.

3 A pipeline for FieldTrip analysis
(single subject level)

The following section explains a pipeline for data analysis with FieldTrip.
The pipeline considered will take into account the following steps, that will
be explained in details in different subsections:

1. Loading the data in MATLAB

2. Giving a first look at the data

3. Filtering the data

4. Epoching the data and retrieve trial information
5. Removing bad channels and bad trials
Performing ICA

Removing artefactual ICA components

S B

baseline correction and trial rejection

9. correcting head movements



10. timelock analysis

3.1 Loading data with FieldTrip

This section explains how to load data with FieldTrip. The section focuses
on CTF data files. First of all you have to change the directory to the one
containing the .db folder of the data to be imported. The import is than
made by means of the ft_preprocessing function:

cd(’/Users/giorgioarcara/Desktop/MEG/Prove MEG fieldtrip’)
cfg=[1;

cfg.dataset="prova_VisualOddBall_20141110_01.ds’
cfg.channel="MEG’;

data_meg=ft_preprocessing(cfg)

The field cfg.dataset telles the name of the data to be imported, whereas
cfg.channel="MEG’ tells to import all MEG channels. The flag '"MEG’
is understood by the system as a shortcut to import all MEG channels.
You can see these options by looking at the help of ft_channelselection.
Alternatively you can specify the channel labels to be imported as a cell
{’BG1’ ’BG2’ BG3’}. The resulting struct, that in this example is called
data_meg, should be similar to the following:



data_meg =

hdr: [1x1 struct]

label: {273x1 cell}

time: {[1x240000 double]}
trial: {[273x240000 double]}
fsample: 600

sampleinfo: [1 240000]

grad: [1x1 struct]

cfg: [1x1 struct]

The output of our call to ft_preprocessing is a struct (data_meg) with
several fields. One of this fields (i.e., trial) will be the matrix containing
the MEG data, but also other information will be stored.

e hdr is a struct containg several informations on the dataset.
e time contains the time (in seconds) of the recording.

e trial contains the data as a electrodes X timepoints matrix.
e fsample indicates the sampling rate.

e sampleinfo indicates information of the sampling points of the epochs
(in this case just one epoch, because data are still stored as continuous).

e grad contains informations on the gradiometers.

e cfg is the complete cfg structure used for the call.

3.2 Giving a first look at the data

After importing the data, and after checking that everything makes sense (by
inspecting the loaded structure), it is a good habit to give a quick look at the
data. The basic function for browsing data in FieldTrip is ft_databrowser.



cfg=[1;
ft_databrowser(cfg, data_meg);

If you run the code above, probably you won’t see anything and you will
be disappointed. This is just a matter of y-axis range. The code above calls
the function for plotting the graph without any further parameters, that are
left to default. You can manually adjust the y-axis range by clicking on the
+ and - buttons beside the label verticals on the right bottom. After this

modificaiton you should see a graphic similar to that in Figure

| 1: ft_databrowser: data_meg

\ File Edit View Insert Tools Desktop Window Help

segment 11400, time from 0k 0998333 5

2154512

1.0772e-12 4

-1.0772e-12

-2.15452-12 L L L ! ! . . . , identify
0

0o 010 020 0.30 040 050 06D 0.70 080 080 1.00
seg

Figure 1: A butterfly plot

The code below shows how to add some parameters before calling the

graph.

10



cfg=1[1;

cfg.viewmode = ’butterfly’;
cfg.continuous=’"yes’

cfg.ylim = [-2.20e-11 2.20e-11]

ft_databrowser(cfg, data_meg)

Alternativly the code below can be used for a plot of stacked electrodes
(see Figure [2)).

cfg=[1;

cfg.viewmode = ’vertical’;

cfg.continuous=’yes’

cfg.ylim = [-2.20e-14 2.20e-14] 7 note the different scale

ft_databrowser(cfg, data_meg)

11



1: ft_databrowser: data_meg
File Edit View Insert Tools Desktop Window Help !

Tt

—my

= ity

0.0 010 020 030 040 050 060 070 080 080 1.00

segmont | < || > |[chamnel|[ < |[ > | horza..|| - ||+ |[veioal [ - || +

——

Figure 2: A scroll plots of all channels

Note that in these lines of code the cfg.ylim specifies a slightly different
limits for the y-axis. I determined this range empirically to obtain a satisfy-
ing visualization.

A nice way to visualize stacked (or grouped) electrodes is to codify the
colors to group left, right and central sensors, with three different colors.
To achieve it is possible to specify the parameter colorgroups, specifying
>labelchar2’. This indicates to take the second letter of channel name to
create a group (and the second letter specify the laterality):

12



cfg=I[1;

cfg.viewmode = ’vertical’;

cfg.continuous=’yes’;

cfg.colorgroups=’1labelchar2’;

cfg.ylim = [-2.20e-14 2.20e-14] 7 note the different scale

ft_databrowser(cfg, data_meg)

Finally, as already explained, if with the result of the call to the function
is put in an object, this latter will be a cfg object containing all the param-
eters of the call: the one specified by the users, plus all the defaults (In the
code below only part of the output is displayed).

13



cfg=I[1;

cfg.viewmode = ’vertical’;

cfg.continuous=’"yes’

cfg.ylim = [-2.20e-14 2.20e-14] 7 note the different scale

cfg=ft_databrowser(cfg, data_meg)
cfg =

viewmode: ’vertical’
continuous: ’yes’

ylim: [-2.2000e-14 2.2000e-14]
callinfo: [1x1 struct]
version: [1x1 struct]
trackconfig: ’off’
checkconfig: ’loose’
checksize: 100000
showcallinfo: ’yes’

debug: ’no’

trackcallinfo: ’yes’
trackdatainfo: ’no’
trackparaminfo: ’no’
preproc: []

artfctdef: [1x1 struct]
selectfeature: {’visual’}
selectmode: ’markartifact’
blocksize: 1

selfun: {1x5 cell}

selcfg: {1x5 cell}
colorgroups: ’sequential’
channelcolormap: [15x3 double]

It is also possible to call a graphic directly from the file, without loading
the object before. In this case, there are some other parameters to be spec-
ified in the cfg structure, but in the call of ft_preprocessing only the cfg

14



structure has to be specified.

cfg.headerformat=’"ctf_ds’
cfg.dataset="GR_VisualOddBall_20141114_01.ds’
cfg.viewmode = ’butterfly’;
cfg.continuous=’yes’

cfg.ylim = [-2.20e-11 2.20e-11]

ft_databrowser(cfg)

3.3 Filtering the data

One of the first step of data pre-processing is filtering. The following files
shows how to do it with FieldTrip. Again the filtering is made with the func-
tion ft_preprocessing. Since this is a quite automatic step I find useful to
combine the filtering with the data import. However, as already explained
is possible to divide these two steps, first importing and then filtering. In
this latter case, the function will require two arguments, the cfg and the data

structure.

cfg=[1;
cfg.dataset="GR_VisualOddBall_20141114_01.ds’
cfg.channel="MEG’;

cfg.lpfilter=’yes’;

cfg.lpfreq=30;

cfg.hpfilter=’yes’;

cfg.hpfreq=1;

data_meg=ft_preprocessing(cfg)

To check if the filtering worked properly I find useful to use a function
from EEGLAB. So the following code will work only if EEGLAB is installed.

15



spectopo(data_meg.trial{1}, 0, data_meg.fsample,
’percent’, 5, ’limits’, [0 70 NaN NaN NaN NaN] );

The arguments of the call to spectopo are the following. The first indi-
cates the data on which calculate the spectra, the second indicates the frames
per epoch (0 tells to use the default, taht is the length for the data), then it
is indicated to calcualted the spectra only on 5% of the data to reduce the
time needed. The last arguments indicates the limits. The first two are the
limits of the frequency (in Hz) all the others indicates the other limits, with
NaN the limits are automatically calculated.

Figure 1 |
File Edit View Insert Tools Desktop Window Help

t h:l_qilﬂrsl! Lz f\-_'\-{fr?:@@g' @) DlE m O

< 260
L
C\_IH
=
= -280
=
oy
o
o 300
B
5
£ -320
] | ]
0 20 40 60

Frequency (Hz)

Figure 3: Channel spectra after filtering

16



3.4 Epoching the data and retrieving trial information

A crucial aspect of epoching data with FieldTrip is that every condition
has to be processed separately. Epoching data consists of two steps:

1. retrieving trial information from the original raw file (by means of the
function ft definetrial)

2. epoching the data according to the trial information (by means of
ft_redefinetrial).

For example in the case of two experimental conditions (Target and NonTar-
get), the following steps are required.

17



% defining Target epochs

cfg = [1;
cfg.dataset="GR_VisualOddBall_20141114_01.ds’ %
cfg.trialdef.eventtype = ’Target’;
cfg.trialdef.prestim = 0.2;
cfg.trialdef.poststim = 1.2;

TargetTrials = ft_definetrial(cfg);

% create epoched data set for Target condition
data_megTarget=ft_redefinetrial (TargetTrials, data_meg)

% defining NonTarget epochs

cfg = [1;
cfg.dataset="GR_VisualOddBall_20141114_01.ds’ %
cfg.trialdef.eventtype = ’NonTarget’;
cfg.trialdef.prestim = 0.2;
cfg.trialdef.poststim = 1.2;

NonTargetTrials = ft_definetrial(cfg);
% create epoched data set for NonTarget condition

data_megNonTarget=ft_redefinetrial (NonTargetTrials,
data_meg)

After the data have been epoched is possible to combine them again in a
single data set. Appending the data in a single data set can be useful for the
purpose of running a single ICA on all the conditions for artifact rejection
(this is desirable, rather than performing separate ICA on each condition).
It is important to note that after appending it’s up to the user to keep
and retrieve the information on the trials (e.g. the condition to which they
belong). In this case trial information can be desumed from the number of
trials of the original datasets (before appending) and from the fact that the

data are appended sequentially.

18



% defining Target epochs

cfg = [1;

data_megEpoch=ft_appenddata(cfg, data_megTarget,
data_megNonTarget)

For example in the case above if TargetTrials consist of 30 trials, in the
resulting appending data the first 30 Trial will be TargetTrials and the re-
meaining will be NonTargetTrials.

-

IMPORTANT: In some cases you may want to append dataset from dif-
ferents recording runs (for example if you splitted the recording session in
two separate files). In such a case the resulting appended data will lose the
coil locations. This is because the coil locations will be different and for
protection fieldtrip will delete the locations. You may follow two routes to
solve this issue: 1) If you are sure that the subject is approximately in the
same position you could retrieve the original coil locations from one of the
appended dataset; 2) You may run separate analysis for the two datasets (for
example source analysis) and then average the results of the different runs.

3.5 Removing bad channels and bad trials

3.5.1 Manual rejection of channels and trials

After Epoching trials it is desirable to check if there are problematic (bad)
channels or trials. To do this check it is possible to use te function ft_rejectvisual.

cfg=[1;
data_megEpochclean= ft_rejectvisual(cfg,data_meg);

Calling this function open a GUI (see Figure [4]) that allows to visualize
potential bad channels and trials. The bottom left panel shows the variable
currently selected to inspect channel and trials (default is variance). The
upper right panel show the trials and channels, with hotter colors indicating

19



potentially bad channels or trials (a hot “column ”indicates a bad trials, and
a hot “row ”indicates a bad channel). The upper right panel indicates the
channel, with outlier values probably denoting channel to be removed. The
bottom left panel indicates the trials with outlier values probably denoting
trials to be removed. You may select (by drawing a window) the trials or
the channels you want to remove. This modifications will be stored in the
object if the call to ft_rejectvisual has been made creating an object (as
in the example code above). By changing the measures it is easy to spot
dead channels (if they are stuck to zero). Be careful with the selection of
trials or channels to remove because there is no way of undoing a selection.
There is are two main issues with the visual selection of channels (and/or
trials). First, there is no optimal threshold for selecting if a channel/trial is
an outlier as compared to the others. Second, you cannot base your selection
on how far a channel/trial is, as compared to the others, since the figure
automatically change the scales based on the range. For such reasons, I
strongly prefer automatic rejection (see next paragraph). Nonetheless, the
visual inspection allows to identify easily dead channle (with 0 values).

20



Figure 1

File Edit View Insert Tools Desktop Window Help

SUrImary

channel nurmker
channel nurmker

, . ' _ . . . Drag the mouse over the channels or trials you

. wish to relect ) ) )
- . ~ Toggle trial: Rejected trials: 0/145
150, » % e 1 (e var
- — s s
. s, . g o, s . ) min No frials refected
(AR ] '.\. .-.‘.-'-..- -.'.:; ’ : '."' b
P . " "'.‘:- S e e T n, gt (_) maxabs  Toggle channel: Rejected channels: 0/273
. s g s 00 . . -y )
os | L] - L] L No channels JE}‘EC‘!M
0 L L \ L L , \ -
20 40 60 80 100 120 140 Rt et _ S
el ETser (| maxzvalue quit
12:31:09%4¢ Done.
12:31:08%# Computing metric...
12:31:05¢ NQTE: "cfg.layout" parameter reguired for trial plotting!

Figure 4: Fieldtrip GUI for visual artifact rejection

3.5.2 Authomatic rejection of channels and trials

Rather than make an manaul rejection it is possible to make an authomatic
rejection of channels (and trials). To identify potentially bad channel it is
possible to check if that channel is highly improbable given the data distribu-
tion on all the channels (the function jointprob is the same called for channel
rejection in eeglab). An alternative is to use the function rejkurt, with the
same parameters as in jointprob. The parameters of the code below are the
same of the default parameters when making channel rejections in EEGLAB.

21



[prob indelec]=jointprob(cell2mat(data_megEpoch.trial),
Sy [y 2)3

find(indelec)

3.5.3 Interpolation of missing channels

Once you have deleted bad channel you can interpolate them with the func-
tion ft_channelrepair. To do this there are some (mechanic) steps to be
performed.

% retrieve the labels of delete channels
rem_chans=setdiff (data_megEpochclean.cfg.channel,
data_megEpochclean.label)

cfg=[1;
mylayout = ft_prepare_layout(cfg, data_megEpoch)

cfg=[1;
neighbours=ft_prepare_neighbours(cfg)

cfg=[1;
cfg.neighbours=neighbours

cfg.missingchannel=rm_chans

interp=ft_channelrepair(cfg, data_megEpoch)

3.6 Correcting head movements

. The main reason to use FieldTrip to analyze MEG data (rather than other
software, like EEGLAB and BRAINSTORM) is that it allows to correct for

22



head motion. There are two main reference for head motion correction: the
article by Stolk et al. (download it here http://fieldtrip.fcdonders.nl/
_media/faq/stolkneuroimage2013.pdf) or this tutorial page on FieldTrip
Wikihttp://fieldtrip.fcdonders.nl/example/how_to_incorporate_head_
movements_in_meg_analysis. There are two important things to keep in
mind about head movement correction:

e head movement correction should be the last step before analysis (e.g.
the last step before timelock analysis or source computation).

e head movement correction depends on the subsequent analysis. For
example, if correction is made for timelock analysis (i.e., averaging)
the corrected data cannot be used for source modeling.

23


http://fieldtrip.fcdonders.nl/_media/faq/stolkneuroimage2013.pdf
http://fieldtrip.fcdonders.nl/_media/faq/stolkneuroimage2013.pdf
http://fieldtrip.fcdonders.nl/example/how_to_incorporate_head_movements_in_meg_analysis
http://fieldtrip.fcdonders.nl/example/how_to_incorporate_head_movements_in_meg_analysis

	Introduction
	Key ideas for using Fieldtrip
	FieldTrip works only trough the command line
	The cfg structure
	The same function does several things
	Fieldtrip can work on objects or on files
	Fieldtrip doesn't make trial bookkeeping
	If you have several conditions, you have to load them separately

	A pipeline for FieldTrip analysis (single subject level)
	Loading data with FieldTrip
	Giving a first look at the data
	Filtering the data
	Epoching the data and retrieving trial information
	Removing bad channels and bad trials
	Manual rejection of channels and trials
	Authomatic rejection of channels and trials
	Interpolation of missing channels

	Correcting head movements


